翻訳と辞書
Words near each other
・ Maximin Coia
・ Maximin de Bompart
・ Maximin Giraud
・ Maximin Isnard
・ Maximin of Trier
・ Maximin-Dominique Consolat
・ Maximino Fernández Ávila
・ Maximino Ávila Camacho
・ Maximinus (diplomat)
・ Maximinus (praetorian prefect)
・ Maximinus II
・ Maximinus of Aix
・ Maximinus Thrax
・ Maximiscin
・ Maximising Employment to Serve the Handicapped
Maximising measure
・ Maximite
・ Maximites
・ Maximization
・ Maximization (psychology)
・ Maximo
・ Maximo (MRO)
・ Maximo and Bartola
・ Maximo Blanco
・ Maximo Chanda Mwale
・ Maximo de Meana y Guridi
・ Maximo Gómez Ponce
・ Maximo Inocencio
・ Maximo Junta
・ Maximo Modesti


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Maximising measure : ウィキペディア英語版
Maximising measure

In mathematics — specifically, in ergodic theory — a maximising measure is a particular kind of probability measure. Informally, a probability measure ''μ'' is a maximising measure for some function ''f'' if the integral of ''f'' with respect to ''μ'' is “as big as it can be”. The theory of maximising measures is relatively young and quite little is known about their general structure and properties.
==Definition==

Let ''X'' be a topological space and let ''T'' : ''X'' → ''X'' be a continuous function. Let Inv(''T'') denote the set of all Borel probability measures on ''X'' that are invariant under ''T'', i.e., for every Borel-measurable subset ''A'' of ''X'', ''μ''(''T''−1(''A'')) = ''μ''(''A''). (Note that, by the Krylov-Bogolyubov theorem, if ''X'' is compact and metrizable, Inv(''T'') is non-empty.) Define, for continuous functions ''f'' : ''X'' → R, the maximum integral function ''β'' by
:\beta(f) := \sup \left. \left\ \nu \right| \nu \in \mathrm(T) \right\}.
A probability measure ''μ'' in Inv(''T'') is said to be a maximising measure for ''f'' if
:\int_ f \, \mathrm \mu = \beta(f).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Maximising measure」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.